Artificial equilibrium points for a generalized sail in the circular restricted three-body problem
نویسندگان
چکیده
منابع مشابه
Oscillatory motions for the restricted planar circular three body problem
In this paper we consider the circular restricted three body problem which models the motion of a massless body under the influence of the Newtonian gravitational force caused by two other bodies, the primaries, which move along circular planar Keplerian orbits. In a suitable system of coordinates, this system has two degrees of freedom and the conserved energy is usually called the Jacobi cons...
متن کاملEffects of radiation on stability of triangular equilibrium points in elliptic restricted three body problem
This paper deals with the stability of triangular Lagrangian points in the elliptical restricted three body problem, under the effect of radiation pressure stemming from the more massive primary on the infinitesimal. We adopted a set of rotating pulsating axes centered at the centre of mass of the two primaries Sun and Jupiter. We have exploited method of averaging used by Grebenikov, throughou...
متن کاملOn the Stability of Equilibrium Positions in the Circular Restricted Four-Body Problem
We consider the stability of equilibrium positions in the planar circular restricted four-body problem formulated on the basis of Lagrange’s triangular solution of the three-body problem. The stability problem is solved in a strict nonlinear formulation on the basis of Arnold–Moser and Markeev theorems. Peculiar properties of the Hamiltonian normalization are discussed, and the influence of the...
متن کاملNonplanar second species periodic and chaotic trajectories for the circular restricted three-body problem
For the circular restricted three-body problem of celestial mechanics with small secondary mass, we prove the existence of uniformly hyperbolic invariant sets of non-planar periodic and chaotic almost collision orbits. Poincaré conjectured existence of periodic ones and gave them the name “second species solutions”. We obtain large subshifts of finite type containing solutions of this type.
متن کاملDestruction of Invariant Curves in the Restricted Circular Planar Three Body Problem Using the Ordering Condition
This paper utilizes Aubry-Mather theory to construct instability regions for a certain three body problem. We consider a Sun-Jupiter-Comet system and under some simplifying assumptions and show the existence of instabilities for orbit of the comet. In particular we show that a comet which starts close to orbit of an ellipse of eccentricity e = 0.748 can increase in eccentricity up to e = 0.826....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Celestial Mechanics and Dynamical Astronomy
سال: 2011
ISSN: 0923-2958,1572-9478
DOI: 10.1007/s10569-011-9366-y